On Hilbert Extensions of Weierstrass’ Theorem with Weights
نویسنده
چکیده
Abstract. In this paper we study the set of functions G-valued which can be approximated by G-valued continuous functions in the norm L∞G (I, w), where I is a compact interval, G is a real and separable Hilbert space and w is certain G-valued weakly measurable weight. Thus, we obtain a new extension of celebrated Weierstrass approximation theorem. Also, we characterize the set of functions which can be approximated by G-valued polynomials with the norm
منابع مشابه
An extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملOn the study of Hilbert-type inequalities with multi-parameters: a Survey
In this paper, we provide a short account of the study of Hilbert-typeinequalities during the past almost 100 years by introducing multi-parametersand using the method of weight coefficients. A basic theorem of Hilbert-typeinequalities with the homogeneous kernel of −−degree and parameters is proved.
متن کاملSome extensions of Darbo's theorem and solutions of integral equations of Hammerstein type
In this brief note, using the technique of measures of noncompactness, we give some extensions of Darbo fixed point theorem. Also we prove an existence result for a quadratic integral equation of Hammerstein type on an unbounded interval in two variables which includes several classes of nonlinear integral equations of Hammerstein type. Furthermore, an example is presented to show the effic...
متن کاملOn the compactness property of extensions of first-order G"{o}del logic
We study three kinds of compactness in some variants of G"{o}del logic: compactness,entailment compactness, and approximate entailment compactness.For countable first-order underlying language we use the Henkinconstruction to prove the compactness property of extensions offirst-order g logic enriched by nullary connective or the Baaz'sprojection connective. In the case of uncountable first-orde...
متن کاملDesigning Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network
In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...
متن کامل